

Ph.D. Agriculture (Genetics and Plant Breeding)

PROGRAM SYLLABUS (EMBEDDED WITH COs)

School of Agriculture, ITM University, Gwalior, Madhya Pradesh 474001

SYLLABUS

WITH

EMBEDDED

COURSE OUTCOMES (COs)

Course Code: GPB- 601 Course N						Iame: Advances in Plant Breeding Systems Semester: I			
Credits	L	Т	Р	M	arks	Contact Hours (per week)	Independent Study Hour (per week)	Sect	ion(Group)
3	0	3	0			3		Ph.	D. Ag.
Curriculum le	evel					Information based Critical thinking based Research based	Student specific course outcome	Hig Plac Rese	ner Education eement earch

Objective: To impart theoretical knowledge about advances in plant breeding.

Course outcomes: After completion of course, the student will be able to:

CO-1	To develop fundamental principles and theories underlying plant breeding
CO-2	To apply statistical methods and experimental design in plant breeding
CO-3	To critically evaluate different plant breeding programmes and their effectiveness in achieving specific breeding goals.
CO-4	Cultivate idea and design to apply their knowledge to solve real time problem in plant breeding
CO-5	Develop a breeding programme for crop improvement
CO-6	Construct a gene pool with qualitative and physiochemical superiority for the target genome

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
	UNIT-I: Advances in reproductive biology of crops; Genes governing the whorls formation and various models proposed; Pollen pistil interaction: biochemical and molecular basis, environmental factors governing anthesis and bottlenecks for gene transfer.	Assignment
Course C o t t	UNITII: Plant Breeding methodologies: Classic versus modern; Over view of Pre and Post Mendelian breeding methods in self and cross pollinated crops; Molecular and transgenic breeding approaches; doubled haploid breeding, shuttle breeding, forward	ABL

and reverse breeding, speed breeding, participatory plant breeding, breeding for organic situations.	
UNITIII: Principles and procedures in the formation of a complex population; Genetic basis of population improvement in crop plants; Recurrent selection methods in self and cross pollinated crops and their modifications; Convergent selection, divergent selection; Recurrent selection, usefulness in hybrid breeding programs; Reciprocal recurrent selection; Selection in clonally propagated crops – Assumptions and realities.	Presentation
UNIT IV: Choice of molecular markers for plant breeding efficiency, fingerprinting and genetic diversity assessment, application of MAS for selection of qualitative and quantitative traits; Gene pyramiding, accelerated backcrossing, marker-based utilization of exotic germplasm, Introgression libraries.	Midterm
UNIT- V: Genetic resources: primary, secondary, tertiary and alien trans gene pool; Molecular and biochemical basis of self-incompatibility and male sterility, nucleocytoplasmic interactions with special reference to male sterility – genetic, biochemical and molecular bases.	Assignments
UNIT-VI: Genetic engineering technologies to create male sterility, prospects and problems, use of self-incompatibility and sterility in plant breeding – case studies; Fertility restoration in male sterile lines and restorer diversification programs; Conversion of agronomically ideal genotypes into male sterile: Concepts and breeding strategies; Case studies - Generating new cyto-nuclear interaction system for diversification of male sterile; Stability of male sterile lines – Environmental influence on sterility, Environmentally Induced Genic Male Sterility (EGMS) – Types of EGMS; Influence on their expression, genetic studies; Photo and thermo sensitive genetic male sterility and its use in heterosis breeding; Temperature sensitive genetic male sterility and its use heterosis breeding; Apomixis and its use in heterosis breeding; Incongruity: Factors influencing incongruity Methods to overcome incongruity mechanisms.	End term
UNIT- VII: Breeding for climate change -Improving root systems, abiotic stress tolerance, water use efficiency, flooding and sub-mergence tolerance; Biotic stress tolerance; Nutrient use efficiency, nitrogen fixation and assimilation, greenhouse gases and carbon sequestration; Breeding for bio-fortification.	End term

Resources:	LCD, Black/White Board, Computer							
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.							
ListofAssignments	 DNA fingerprinting for diversity assessment in a given population Molecular and transgenic breeding approaches Gene Pyramiding 							
ABL	 Shuttle breeding Speed breeding Use of molecular marker to utilize suitable candidate gene from exotic line 							

	A. Textbooks:
Suggested reading:	 Agarwal RL. 1996. Fundamentals of Plant Breeding and Hybrid Seed Production. Oxford & IBH. Allard RW. 1966. Principles of Plant Breeding. John Wiley & Sons. Briggs FN and Knowles PF. 1967. Introduction to Plant Breeding. Reinhold. Fehr WR. 1987. Principles of Cultivar Development: Theory and Technique. Vol I. Macmillan. Hayes HK, Immer FR and Smith DC. 1955. Methods of Plant Breeding. McGraw-Hill.
	Kang MS and Priyadarshan PM (Edit.). 2007. Breeding Major Food Staples. Blackwell Publishing.
	B. Reference Book:
	Kole C. 2013. Genomics and Breeding for Climate-Resilient Crops. Springer. Volume 2-Target Traits.
	Mandal AK, Ganguli PK and Banerji SP. 1995. Advances in Plant Breeding. Vol. I, II. CBS. Richards AJ. 1986. Plant Breeding Systems. George Allen &Unwin.
	Sharma JR. 1994. Principles and Practice of Plant Breeding. Tata McGraw-Hill.
	Simmonds NW. 1979. Principles of Crop Improvement. Longman.
	Singh BD. 1997. Plant Breeding: Principles and Methods. 5th Ed., Kalyani Publishers,
	New Delhi.
	Singh P. 1996. Essentials of Plant Breeding. Kalyani Publishers, New Delhi. Welsh JR. 1981. Fundamentals of Plant Genetic and Breeding. John Wiley.

Course Code: GPB-603					Course Name: Molecular Cytogenetics for Crop Improvement Semester: I				
Credits	L	Т	Р	N	larks	Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)	
2	0	2	0			2		Ph.D. Ag.	
Curriculum le	evel					Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research	

Objective: This course focuses on applications of cytogenetic techniques for crop improvement.

Course outcomes: After completion of course, the student will be able to:

CO-1	Understand the sole of chromosomal analysis in understanding crop genetics
CO-2	Apply molecular cytogenetics technique to identify chromosomal anomalies in crop plants
CO-3	Analyse cytogenetics data to identify chromosomal rearrangement and genomic variation in crop
CO-4	Assess the potential impact of chromosomal manipulation on crop breeding outcomes
CO-5	Design a molecular catalogue based breeding design for crop improvement

Assessment tools	
AT1-1	One Midterm Exam
AT1-2	Seminar, Presentation
AT1-3	Assignment
AT1-4	Activity Based Learning

Prerequisites	Unit wise contents details	Assessment tools
	UNIT-I: Organization and structure of genome, Genome size, Organization of organellar genomes, Nuclear DNA organization, Nuclear and Cytoplasmic genome	Assignment
a S	interactions and signal transduction; Inheritance and expression of organellar DNA; Variation in DNA content - C value paradox; Sequence complexity – Introns and	Mid term
Course Content	UNIT-II: Karyotyping – Chromosome banding and chromosome painting; Tracking introgressions using FISH, GISH, localization and mapping of genes/ genomic segments.	Mid term
	UNIT-III: Pre-breeding and applications of cytogenetical methods for crop improvement; Location and mapping of genes on chromosomes: deficiency method; Interchange genetic consequence, identification of chromosomes involved and gene location; balanced lethal systems, their maintenance and utility; Multiple	ABL

interchanges-use in producing inbreds, transfer of genes- linked marker methods; Duplication - production and use; Inversions and location of genes; B/ A chromosome translocations and gene location.	
UNIT- IV: Trisomics- types, production, breeding behavior and location of genes, use of balanced tertiary trisomics in hybrid seed production; Monosomics methods of production, breeding behavior and location of genes; Intervarietal substitutions-allelic and non- allelic interactions; Telocentric method of mapping.	Assignments
UNIT- V: Cytogenomics: Concept, tools and techniques for crop improvement; Chromosome sorting: Isolation of specific chromosome for development of molecular maps and gene location.	End term
UNIT- VI: Role of polyploidy in crop evolution and breeding. Auto- and allopolyploids; Distant hybridization, barriers to interspecific and intergeneric hybridization; Behaviour of interspecific and intergeneric crosses.	End term

Resources:	LCD,Black/WhiteBoard,Computer, Projector
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.
ListofAssignments	 Cytogenomics tools and techniques in crop improvement Role of polyploidy breeding in crop improvement Interspecific and Intergeneric hybridization
ABL	 Using molecular marker to find gene location FISH and GISH for tracking introgression Karyotyping
Suggestedreading:	 Textbooks: Clark MS and Wall WJ. 1996. Chromosomes: The Complex Code. Chapman & Hall. 30 June 1996 Conger BV. (Ed.). 1981. Cloning Agricultural Plants via in-vitro Techniques. CRC Press. 31 January 2018 Constabel F and Vasil IK. (Eds.). 1988. Cell Culture and Somatic Cell Genetics of Plants. Vol. V. Cell Culture and Phytochemicals in Plant Cell Cultures. Academic Press. Yao-Shan F. 2002. Molecular Cytogenetics: Protocols and Application. Human Press ReferenceBook: Gupta P K. 2006. Cytogenetics. Rastogi Publisher Lal R and Lal S. (Eds.). 1990. Crop Improvement Utilizing Biotechnology. CRC Press. Mantel SH and Smith H. 1983. Plant Biotechnology. Cambridge University Press. Sen SK and Giles KL. (Eds.). 1983. Plant Cell Culture in Crop Improvement. Plenum Press. 13 July 2013

Course Code: GPB-604					se N zatio	ame: Plant Genetic Resour n	ces, Conservation and	1	Semester: I
Credits L T P			Ma	rks	Contact Hours (per week)	Independent Study Hour(per week)	Sect	ion(Group)	
2	0	2	0			2			Ph.D. Ag.
Curriculum le	evel			· · · ·		Information based Critical thinking based Research based	Student specific course outcome	Hig Plac Res	her Education cement earch

Objective: To impart knowledge on the methods of germplasm conservation and its utilization

Course outcomes:

CO-1	Define plant genetic resources its utilization and conservation
CO-2	Discuss the importance of genetic material to maintain adequate diversity in arena of crop species
CO-3	Utilization of repository to preserve genetic propagules
CO-4	Examine the role of diversified gene pool to create bridge species
CO-5	Determine the role of biodiversity to maintain species versity

Classroom Lectures/Guest lectures
1 Student Seminars/Presentations
ABL activities
2 Assignments
rssignments

Assessment tools		
AT1-1	One Mid term Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Pr	erequisites	Unit wise contents details	Assessment tools
Course Contents	Contents	UNIT-I: Concept of natural reserves and natural gene banks; In situ conservation of wild species in nature reserves: in situ conservation components, factors influencing conservation value, national plan for in situ conservation; in situ conservation of agrobiodiversity on-farm; scientific basis of in situ conservation on-farm, building on-farm conservation initiatives, implementation of on-farm conservation, management of in situ conserved genetic diversity on-farm, enhancing benefits for farmers from local crop diversity.	Assignment Mid term
	0	UNIT-II: Ex situ conservation: components, plant genetic resources conservation in gene banks, national gene banks, gene repositories, preservation of genetic materials under natural conditions, perma-frost conservation, guidelines for seed multiplication and exchange to network of active/ working collections, orthodox, recalcitrant seeds-	Mid term

differences in handling, clonal repositories, genetic stability under long term storage condition.	
UNIT-III: In-vitro storage, maintenance of in-vitro culture under different conditions,	ABL
in-vitro bank maintenance for temperate and tropical fruit crop species, spices, tubers,	
bulbous crops, medicinal and endangered plant species, conservation of embryos and	
ovules, cell/ suspension cultures, protoplast and callus cultures, pollen culture,	
micropropagation techniques, problems, prospects of in-vitro gene bank.	
UNIT- IV: Cryopreservation- procedure for handling seeds of orthodox and	Assignments
recalcitrant-cryo- protectants, desiccation, rapid freezing, slow freezing, vitrification	
techniques, encapsulation/ dehydration techniques, national facilities, achievements,	
application of cryopreservation in agricultural, horticultural and forestry crops.	
Problems and prospects; challenges ahead.	
UNIT- V: Concept and procedure for PGR management, germplasm characterization,	End term
evaluation and utilization; Concept of core and mini core; collections and registration	
of plant germplasm.	

Resources:	LCD, Black/White Board, Computer, Projector									
Assignment/Tutorial	Students are required to submit the given assignments and deliver one power point									
Assignment/Tutorial.	presentation as a part of their continuous evaluation system.									
	1. Scientific basis of in-situ conservation									
List of Assignments	2. PGR management, germplasm characterization, evaluation and utilization									
	3. Genetic stability under long term storage condition									
ADI										
ABL	1. POR Management									
	2. Germplasm collection and characterization 3. Germplasm registration and passport data filling									
	5. Ocimpiasin registration and passport data minig									
	► Filis RH Roberts FH and White Head I 1980 A New More Economic and									
	Accurate Approach to Monitor the Vishility of Accessions During Storage in Seed									
	Panka EAO/ IDDGD DI Gonat Desources News 41.2.18									
	Baiks, FAO/ IBFOR FI. Genet. Resources News 41-5-18.									
	Frankel OH and Hawkes JG. 1975. Crop Genetic Resources for Today and									
	Tomorrow. Cambridge University Press, Cambridge.									
	Paroda RS and Arora RK.1991. Plant Genetic resource Conservation and									
Suggested reading:	management, NBPGR, New-Delhi.									
	Simmonds NW. 1979. Principles of Crop Improvement, Longman									
	Reference Book:									
	Westwood MN 1986 Operation Manual for National Clanal Complement									
	Repository Processed Report USDA-ARS and Oregon State Univ Oregon USA									
	Reporting, Trocosce Report, CODIT Fills and Oregon State Only, Oregon, ODA.									
	Withers LA. 1980. Tissue Culture Storage for Genetic Conservation. IBPGR Tech. Rep. IBPGR, Rome, Italy.									

Course Code: SST-6	601			Course N	ame: Hybrid Seed Produc	Semester: I	
Credits	L	T P Marks		Marks	Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)
3	0	2	1		4		Ph.D. Ag.
Curriculum le	evel	1	1		Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: To provide students a comprehensive knowledge and practical exposure on hybrid seed production techniques in agricultural and horticultural crops.

Course outcomes: After completion of course, the student will be able to:

CO-1	To understand the various tools involved in hybrid seed production of crop plants
CO-2	To acquire the knowledge on conventional and molecular breeding methods to obtain yield improved crop varieties.
CO-3	Apply the advanced breeding tools for quality seed production
CO-4	Analyze the descriptors in various crops for selection of superior genotype
CO-5	Evaluate the techniques of hybrid seed production in major agricultural crops
CO-6	Develop biotic and abiotic resistance variety for higher yield

e	
	Classroom Lectures/Guest lectures
T1	Student Seminars/Presentations
	ABL activities
T2	Assignments

Assessment tools		
AT1-1	One Mid term Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Pı	rerequisites	Unit wise contents details	Assessment tools
'se	ents	UNIT-I: Introduction – history – scope – importance of hybrid development – national and international scenario of seed industry – popular public sector hybrids in various crops. Heterosis – definition – expression – types – utilization of heterosis in hybrid development, hybrid vigour and seed vigour.	Assignment Mid term
Cour	Conte	UNIT-II: Types of hybrids – intra-specific, inter-specific hybrids, single, double, three way cross, top cross hybrids – apomixes; generation system of seed multiplication in different types of hybrids. Development and maintenance of inbred lines – male sterile – maintainer lines – fertility restoration – transgenic hybrids – principles and method of development.	Mid term

UNIT-III: Breeding tools – genetic mechanism – male sterility – types: CMS, GMS, A CGMS, TGMS, PGMS – barnase and barstar system – pistillateness – self incompatibility. Manual creation of male sterility – emasculation and pollination – gametocides – mode of action, mechanism. Synchronization of flowering – problems – methods to achieve synchrony – planting ratio and supplementary pollination methods.	ABL
UNIT- IV: Techniques of hybrid seed production in major agricultural crops – cereals (wheat, rice), millets (maize, sorghum, bajra), pulses (red gram), oilseeds (sunflower, castor, mustard), cotton and forage crops.	Assignments
UNIT- V: Hybrid seed production techniques in horticultural crops – tomato, brinjal, chilli, bhendi, onion, bitter gourd, bottle gourd, ridge gourd, cucumber, melon, cabbage, cauliflower, potato, coconut and papaya.	End term

Resources:	LCD, Black/White Board, Computer, projector, Field	
Practical Exercise	Course Modules	Assessment tools
	 Course Modules Characteristics features of parental lines and their hybrids; Floral biology of rice, maize, pearlmillet, sunflower, castor and cotton; Studyonfloralbiologyofvegetablecrops-solanaceousandothervegetables; Study on floral biology of cucurbitaceous crops; Production and maintenance of A, B and R lines; Practicing planting design and border rows – rice, maize, pearlmillet, sunflower and red gram; brinjal and chillies; Practicing planting design and border rows – rice, maize, pearlmillet, sunflower and red gram; brinjal and chillies; Practicing planting design and border rows in tomato, cotton and cucurbitaceous vegetables; Manipulation for synchronization – rice, sunflower, pearlmillet and sorghum; Practicing supplementary pollination – rice and sunflower; Practicingfieldin section inhybridseedproductionplot– cropsplantedinratio– sunflower, pearlmillet, sorghum, etc.; Practicing roguing and identification of off-types – pollen shedders – shedding tassel – selfed fruits; Visit to hybrid seed production plots; Determination of cost benefit of hybrid seed production; Visit to seed Industry and assessing problems and perspectives in hybrid seed production. 	Assessment tools Activity based learning can be given to implement application aspect
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.	
List of Assignments	 Self-incompatibility Transgenic Male Sterility Transgenic Hybrids 	
ABL	 Hybrid seed production in tomato Exploitation of heterosis in hybrid line development 	
	A. Textbooks:	
	 Agarwal RL. 2012. Seed Technology. 3rdEd. Oxford & IBH Publishers, New Delhi. Basra A. 1999. Heterosis and Hybrid Seed Production in Agronomic Crops. CRC Press., Florida, United States 	
	> Chhabra AK. 2006. Practical Manual of Floral Biology of Crop	

		Plants. Department of Plant Breeding, CCSHAU, Hisar.
		➢ Dar SH. 2018. Methods of Hybrid Seed Production in Major Crops.
		Educreation Publishing, Chhattisgarh.
Suggested reading:		▶ Frankel R and Galun E. 1977. Pollination Mechanisms, Reproduction
		and Plant Breeding. Springer Verlag. New York.
	R	Reference Book:
	D .	> Hebblethwaite PD 1980 Seed Production Butterworth Heinemann
		Itd. London UK
		Soshi AK and Singh BD. 2004. Seed Science and Technology.
		Kalyani Publishers, New Delhi.
		Krishnan M. 2012. Plant breeding and Hybrid Seed Production.
		Dominand Publishers & Distributors, New Delhi, India.
		Kulkarni GN. 2011. Principles of Seed Technology. Kalyani
		Publishers, New Delhi.
		Maiti RK, Sarkar NC and Singh VP. 2006. Principles of Post-Harvest
		Seed Physiology and Technology, Agrobios, Jodhpur, India.
Suggested websites		1. www.agriguest.info
		2. www.agriinfo.in
		3. www.seedquest.com
		4. https://agriinfo.in/botany/18/
		5. http://www.fao.org/3/a-e8935e.pdf
		6. http://www.agriquest.info/seed_production.php
		7. http://agritech.tnau.ac.in/seed_certification/seedtech_index.html

Course Code: STAT	- 522			Cours	Name: Data Analysis Usin	g Statistical Packages	Semester: I
Credits	L	Т	Р	Marks	Contact Hours	Independent Study	Section(Group)
					(per week)	Hour (per week)	
3	0	2	1		4		Ph.D. Ag.
Curriculum le	evel	1		· · · · ·	Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: Exposing student in the usage of various statistical packages for data analyses.

Course outcomes: After completion of course, the student will be able to:

CO-1	Describe various statistical methodologies and statistical packages
CO-2	Illustrate suitable data analysis methods
CO-3	Demonstrate various statistical packages of data sufficiency
CO-4	Analyse multivariate study using suitable statistical testing tool
CO-5	Evaluate the data accuracy and precision by carried out by different packages

0	
	Classroom Lectures/Guest lectures
T1	Student Seminars/Presentations
	ABL activities
T2	Assignments
	6

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
\$	UNIT-I: Introduction to various statistical packages: Excel, S, SAS, SPSS; Data preparation; Descriptive statistics; Graphical representation of data, Exploratory data analysis.	Assignment Mid term
Course Content	UNITII: Test for normality; Testing of hypothesis using chi-square, t, F Statistics and Z-test.	ABL
	UNITIII: Data preparation for ANOVA, ANCOVA, factorial experiment, Contrast analysis, multiple comparison, Analyzing crossed and nested classified designs.	Assignments

UNIT IV: A	Analysis of mixed models; Estimation of various components;	End term
Correlation an	nd Regression analysis, Probit, Logit and Tobit models	
UNIT- V: D	iscriminant function; Factor analysis; Principle component analysis;	End term
A malying of the	me series data: Fitting of non linear models: Neural network	

Resources:	LCD, Black/White Board, Computer, Statistical packages	
Practical Exercise	Course Modules	Assessment tools
	Demonstration & Report Preparation 1. Data preparation for ANOVA and Factorial experiment 2. Graphical presentation of data Lab Analysis & Report Preparation 1. Descriptive Statistics 2. Exploratory Statistics	Activity based learning can be given to implement application aspect
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.	
List of Assignments	 Introduction and use of different statistical packages: R, SPSS, SAS Test of normality, testing of hypothesis using chi- square, F, T and Z Test. Analysis and interpretation of time series data 	
ABL	 Use of software packages for data summarization, tabulation and representation Multivariate analyses Design of experiment and their utility in field/lab level 	
Suggested reading:	 A. Textbooks: Anderson C.W. and Loynes R.M. 1987. The Teaching of practical Statistics. John Wiley. Atkinson A.C. 1985. Plots Transformation and Regression. Oxford University Press. Chambers J.M., Cleveland W.S., Kleiner B and Tukey P.A. 1983 Graphical Methods for Data Analysis. Wadsworth, Belmount, California. Chatfield C. 1983. Statistics for Technology. 3rd Ed. Champan& Hall. Chatfield C. 1995. Problem Solving: A Statistician Guide .Champan& Hall. B. Reference Book: Snell E.J and Simpson HR. 1991. Applied Statistics: A Handbook of GENSTAT Analyses. Champan and Hall. Sprent. P. 1993. A /non-Parametrical Statistical Methods. 2nd Ed. Champan and Hall. 	

Course Code: GPB-602					urse	N٤	ame: Advances in Biometr	ical Genetics	Semester: II
Credits	L	T	Р	N	1arks		Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)
3	0	2	1				4		Ph.D. Ag.
Curriculum le	evel			•			Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: To impart theoretical knowledge and computation methods for non-allelic interactions, mating designs and component analysis and their significance in plant breeding.

Course outcomes: After completion of course, the student will be able to:

CO-1	Identify the fundamental principles of inheritance of quantitative genetics
CO-2	Describe and explain the role of genetic variation in population studies
CO-3	Apply biometrical methods to analyse genetic data and estimate genetic figures
CO-4	Assess the strategies and limitation of biometrical methods in genetic research
CO-5	Create a research design for biometrical studies
CO-6	

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
	UNIT-I: Continuous variation-evolutionary studies; Genetic principles of continuous	Assignment
	variation, Qualitative and quantitative techniques-differences, population types, approaches; various types of metrics, F2, F and mixed; Selection of parents	Mid term
به	Simultaneous selection models; Use of Multiple regression analysis in selection of	
l	genotypes.	
0	UNITII: Components of mean- Additive effect, breeding value, coefficient of gene	ABL
Ŭ	dispersion, dominance; Simple scaling test, expectation of mean of character in	
	various types of families in coupling and dispersed phase; Epistasis- Specification,	
C te n o te	weighted and un-weighted joint scaling test; Effect of linkage to generation mean, specification of mean to $G \times E$ interaction.	

UNITIII: Component of variances-advantages, variances of different generation balance sheet of variance; estimation of parameters-weighted and unweighted, lea square analysis; random mating population; experimental population-BIPs, NCD-I, I III, Triple test cross for random mating population and inbreds; Estimates of linkag and non-allelic interactions; Combining ability analysis, Hayman's Approach.	s, Assignments tt t, e
UNIT IV: $G \times E$ Interaction, stability and adaptability; Advanced models in stability analysis - Pattern analysis - Additive Main Effect and Multiplicative Interaction (AMMI) analysis and other related models; Merits and limitation of different stability analysis methods; Analysis and selection of genotypes; Methods and steps to sele the best model - Biplots and mapping genotypes.	y End term n y tt
UNIT- V: Construction of saturated linkage maps, concept of framework ma development; QTLs-different types of markers and mapping populations, linkag maps, mapping- Strategies for QTL mapping - desired populations, statistic methods; MAGIC populations, Marker Assisted Selection (MAS) - Approaches apply MAS in Plant breeding - selection based on markers - simultaneous selection based on marker and phenotype - Factors influencing MAS; Heritability of the tran proportion of genetic variance, linkage disequilibrium between markers and traits ar selection methods; Use of advanced software packages for biometrical analysis interpretation of analysed data.	p End term e ll o n t, d

Resources:	LCD, Black/White Board, Computer, Statistical packages	
Practical Exercise	Course Modules	Assessment tools
	 Demonstration & Report Preparation Generation mean analysis using scaling test and its interpretation Stability analysis using Eberhart and Russel Model and its interpretation Lab Analysis & Report Preparation Construction of linkage map and QTL Mapping Use of advanced statistical software in biometrical analysis 	Activity based learning can be given to implement application aspect
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.	-
List of Assignments	 MAS in plant breeding Merit and limitation in different stability models MAGIC Population 	
ABL	 AMMI analysis Use of different statistical model for QTL mapping 	
Suggested reading:	 A. Textbooks: Bos I and Caligari P. 1995. Selection Methods in Plant Breeding. Chapman & Hall. Dabholkar AR.1993. Elements of Biometrical Genetics. Concept Publishing Co. New Delhi. Falconer DS and Mackay J. 1996. Introduction to Quantitative Genetics (4 Ed.). ELBS/ Longman, London. Mather K and Jinks JL. 1985. Biometrical Genetics (3rd Ed.). Chapman and Hall, London. Nandarajan N and Gunasekaran M. 2008. Quantitative Genetics and Biometrical Techniques in Plant Breeding. Kalyani Publishers, New Delhi. Roy D. 2000. Plant Breeding, Analysis and Exploitation of Variation. Narosa Publishing House, New Delhi. Singh P and Narayanan SS. 1993. Biometrical Techniques in Plant Breeding. Kalyani Publishers, New Delhi. 	

	B. Reference Book:	
*	Singh RK and Choudhary BD. 1987. Biometrical Methods in Quantitative Genetics. Kalyani Publishers, New Delhi.	
*	Weir DS. 1990. Genetic Data Analysis. Methods for Discrete Population Genetic Data. Sinauer Associates.	
~	Wricke G and Weber WE. 1986. Quantitative Genetics and Selection in Plant Breeding. Walter de Gruyter.	

Course Code: GPB-	605			Course 1	Name: Genomics in Plant B	reeding	Semester: II
Credits	L	Т	Р	Marks	Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)
3	0	3	0		3		Ph.D. Ag.
Curriculum le	evel				Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: To impart practical skills in advanced molecular techniques in genome mapping structural/ functional genomics.

Course outcomes: After completion of course, the student will be able to:

CO-1	Identify key terms and cell basic concept of genomics related to plant system
CO-2	Explain and summarize principles and application of plant genomics in relation to breeding
CO-3	Apply genomic tools to analyse and interpret plant genetic data
CO-4	Compare and contrast different genomic approach for plant breeding
CO-5	Assess the effectiveness of genomic selection in implanting plant traits
CO-6	Design a genomic assisted breedingstrategies for crop improvement

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
	UNIT-I: Introduction to the plant genomes: nuclear, chloroplast and mitochondrial genomes; Concept of genome size and complexity: C-value paradox, repetitive and unique DNA.	Assignment
Course C o n t e	UNITII: Genome sequencing: Principles and techniques of conventional approaches and next generation sequencing including sequencing-by-synthesis/ ligation and single molecule real time (SMRT) technologies; Applications of sequence information: structural, functional and comparative genomics; Plant genome projects: Strategies for genome sequencing including shot gun and clone-by-clone method.	ABL

UNITIII: Molecular maps: Use of molecular markers/ SNPs for development of genetic and physical maps; Linkage and LD-based gene mapping approaches including gene/ QTL mapping, genome wide association studies (GWAS) and association analysis; Integration of genetic and physical map for map-based cloning of economically important genes. Concept of allele mining; Diversity array technology: concepts and applications.	Presentation
UNIT IV: Functional genomics: concept of reverse and forward genetics; Use of activation tagging, transposon tagging, insertional mutagenesis, TILLING and ECO-TILLING for crop improvement; Genome-wide and gene-specific transcriptomics approaches: serial analysis of gene expression, massively parallel signature sequencing, next generation sequencing, microarray, northern hybridization, RT-PCR, qRT-PCR and molecular beacon.	Midterm
UNIT- V: Development and management of database; Applications of bioinformatics tools/ software in genomics for crop improvement. Basic concepts of high-throughput proteomics, metabolomics and phenomics.	Assignments
UNIT-VI: Recent transgene free genome editing tools such as CRISPR-Cas9 system, TALENS and ZFNs for crop improvement. Cisgenesis and Intragenesis tools as twin sisters for Crop Improvement; Genomics-based plant breeding: Genome-Wide Genetic Diversity Studies, Identification of molecular markers linked to single Genes and QTL, Marker Assisted Selection (Marker Assisted Backcross Selection, Association mapping, Breeding by Design, Genome selection).	End term

Resources:	LCD, Black/White Board, Computer
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.
ListofAssignments	 Applications of bioinformatics tools/ software in genomics for crop improvement. Next Generation Sequencing Genome Wide Association Studies (GWAS)
ABL	 Northern hybridization Microarray Use of bioinformatics tools for molecular docking A. Textbooks:
Suggested reading:	 Alonso JM, Stepanova AN. 2015. Plant Functional Genomics: Methods and Protocols. Springer. Chopra VL, Sharma RP, Bhat SR and Prasanna BM. 2007. Search for New Genes. Academic Foundation, New Delhi. Hackett PB, Fuchs JA and Messing JW. 1988. An Introduction to Recombinant DNA Technology— Basic Experiments in Gene and Manipulation. 2ndEd. Benjamin Publication Co. Primose SB and Twyman RM. 2006. Principles of Gene Manipulation and Genomics. 7th Ed. Wiley-Blackwell Publishing. B. Reference Book: Sambrook J and Russel D. 2001. Molecular Cloning - a Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press. Singh BD. 2005. Biotechnology: Expanding Horizons. Kalyani Publishers, New Delhi. Somers DJ, Langridge P, Gustafson JP. 2009. Plant Genomics: Methods and Protocols. Springer.
Suggested e- resources(Websites/e- books)	1. http://gramene.org 2. <u>https://www.arabidopsis.org</u> 3. <u>https://wheat.pw.usda.gov</u> 4. <u>http://ncbi.nlm.nih.gov</u> 5. http://www.maizegenetics.net

Course Code: SST- 604				Course N	Semester: II		
Credits	L	T	Р	Marks	Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)
3	0	2	1		4		Ph.D. Ag.
Curriculum level				<u> </u>	Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: To impart knowledge on various methods of genetic purity assessment and DUS testing for protection of plant varieties

Course outcomes: After completion of course, the student will be able to:

CO-1	To Describe the DUS Testing for genetic Purity analysis
CO-2	To Identify the suitable molecular method for genetic Purity analysis
CO-3	Utilize the morphological and molecular methods of DUS testing
CO-4	To Categorize the National and International regulations for plant variety protection
CO-5	Assessment of DUS characteristics of major crops
CO-6	Develop a system to increase crop production, increase farmers income and standard of living

0	Classroom Lectures/Guest lectures
T1 5	Student Seminars/Presentations
T2	ABL activities Assignments

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
	UNIT-I: Genetic purity - importance - factors influencing genetic purity; genetic/	Assignment
	cultivar purity test – objectives – principles – methods; laboratory tests – green house	2.6.1.
	and field plot methods, grow – out test, seed and seedling growth tests; chemical and	Mid term
rse	biochemical methods; anthocyanin pigmentation, secondary compounds, phenol,	
no	peroxidase and fluorescence tests – chromatography techniques.	
Ŭ	UNITII: Electrophoretic analysis of proteins and isozymes; DNA finger printing	ABL
t n o C	methods - RAPD, AFLP, SSR, SNP and other markers; computer based machine	
	vision technique and image analysis for varietal identification	

UNITIII: Genesis of Plant Variety Protection (PVP); International Union for	Assignments
Protection of New Varieties of Plants (UPOV) and its functions – GATT agreement in	
relation to plant variety protection; Protection of Plant Varieties and Farmer's Rights	
(PPV and FR) Act 2001 – objectives, salient features, farmer's rights, breeder's rights,	
researcher's rights – PPV and FRA Rules 2003.	
UNIT IV: Criteria for protection of new varieties of plants; Distinctness, Uniformity	End term
and Stability (DUS) testing – principles and procedures, guidelines, sample size, test	
duration, testing option; varieties of common knowledge – extant variety –	
essentiallyderived variety, Plant Sciences-Seed Science and Technology- collection	
of reference samples – grouping of varieties – example varieties; types and categories	
of characters – recording observations on characteristics – colour characteristics	
UNIT- V: Assessment of DUS characters of major crops based on morphological,	End term
biochemical and molecular markers – rice, maize, wheat, barley, black gram, green	
gram, red gram, cowpea, rajma, sunflower, groundnut, castor, mustard, tomato,	
brinjal, onion, potato, chilli, bhendi, cucurbits, cole crops, sugarcane, cotton, flower,	
fruit and tree species; statistical procedure - computer software for DUS testing;	
guidelines for registration of germplasm – impact of plant variety protection on seed	
industry growth.	

Resources:	LCD, Black/White Board, Computer, Statistical packages	
Practical Exercise	Course Modules	Assessment tools
Assignment/Tutorial:	Students are required to submit Field & Lab Report, Assignments and ABL	
Assignment/Tutoriai:	activities as a part of their continuous evaluation system.	
List of Assignments:	 Practical exercise on recording DUS characteristics, statistical analysis and interpretation in major agricultural crops. Practical exercise on recording DUS characteristics, statistical analysis and interpretation in major horticultural crops. 	
	Genetic purity assessment based on seed characters;	Activity based
	• Genetic purity assessment based on seedling growth tests, anthocyanin pigmentation;	learning can be given to implement application
	• Genetic purity assessment based on secondary compounds, phenol, peroxidase and fluorescence tests;	aspect
	Chromatography analysis of secondary compounds;	
	• Electrophoretic analysis of seed protein and isozymes;	
	• DNA fingerprinting using PCR techniques;	
	• DUS testing based on morphological descriptors of plant – rice and millets;	
	 DUS testing based on morphological descriptors of plant – pulses and oil seeds; 	
	• DUS testing based on morphological descriptors of plant – vegetable crops;	
	• DUS testing based on morphological descriptors of plant – flower, fruit and tree species;	

	Recording observations and interpretation of data;
	• Tree method of classification of varieties/ cultivars;
	Chemical and biochemical test applicable for DUS testing;
Suggested reading:	 A. Textbooks: Anon. 2016. Manual of Seed Certification Procedures. Directorate of Seed Certification, Coimbatore, Tamil Nadu. Chakrabarthi SK. 2010. Seed Production and Quality Control. Kalyani Publishers, New Delhi. Choudhary DR. 2009. Guidelines for Storage and Maintenance of Registered Plant Varieties in the National Gene Bank. Published by Protection of Plant Varieties and Farmer's Rights Authority. Ministry of Agriculture, GoI, New Delhi, India. B. Reference Book: ISTA. 2010. Handbook of Variety Testing. International Seed Testing Association, Switzerland. Joshi AK and Singh BD. 2004. Seed Science and Technology, Kalyani Publishers, New Delhi, India Maiti RK, Sarkar NC and Singh VP. 2006. Principles of Post Harvest Seed Physiology and Technology. Agrobios., Jodhpur, India. ISTA. 2010. Handbook of Variety Testing. International Seed Testing Association, Switzerland. Joshi AK and Singh BD. 2004. Seed Science and Technology, Kalyani Publishers, New Delhi, India ISTA. 2010. Handbook of Variety Testing. International Seed Testing Association, Switzerland. Joshi AK and Singh BD. 2004. Seed Science and Technology, Kalyani Publishers, New Delhi, India. ISTA. 2010. Handbook of Variety Testing. International Seed Testing Association, Switzerland. Joshi AK and Singh BD. 2004. Seed Science and Technology, Kalyani Publishers, New Delhi, India Intellectual Property Rights : Key to new wealth generation,-Delhi NRDC and Aesthetic technologies, 2001 Mishra DK, Khare D, Bhale, MS and Koutu GK. 2011. Handbook of Seed Certification. Agrobios, Jodhpur, Rajasthan. Ramamoorthy K, Sivasubramaniam K and Kannan M. 2006. Seed Legislation in India. Agrobios, Jodhpur, Rajasthan.
Suggested websites:	www.seedquest.com www.ucanr.edu www.sasa.gov.uk www.ppvfra.org https://www.upov.int/test_guidelines/en/ http://plantauthority.gov.in/crop-guidelines.htm https://www.upov.int/resource/en/dus_guidance.html https://www.upov.int/edocs/tgpdocs/en/tgp_6_section_2.pdf https://www.upov.int/publications/en/tg_rom/introduction.html
Suggested e-books:	https://books.google.co.in/books?isbn=16118603932. https://books.google.co.in/books?isbn=81894220303. https://books.google.co.in/books?id=2FbwZwEACAAJ https://books.google.co.in/books?id=J5bQtgAACAAJ https://books.google.co.in/books?isbn=0851997392 https://www.upov.int/edocs/tgdocs/en/tg023.pdf

Course Code: BIOCHEM- 505			Course Name: Techniques in Biochemistry			Semester: II	
Credits	L	Т	Р	Marks	Contact Hours (per week)	Independent Study Hour(per week)	Section(Group)
4	0	2	2		6		Ph.D. Ag. & Horti.
Curriculum le	evel			· · · · ·	Information based Critical thinking based Research based	Student specific course outcome	Higher Education Placement Research

Objective: To provide hands-on experience to different biochemical techniques commonly used in research along with knowledge on principles and the instrumentation.

Course outcomes: After completion of course, the student will be able to:

CO-1	Describe basic methods and technologies used for biochemical procedure
CO-2	Explain the various methods involves in different biomolecular work
CO-3	Demonstrate use of various biochemical instrument for analyses of given sample
CO-4	Separation and estimation of differentmetabolomesfor the given sample
CO-5	Evaluate the disease affected samples to assess the level of different biomolecules
CO-6	Construct a strategies for detection of suitable metabolomesto study plant response at the time of antigen invasion.

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABLactivities Assignments

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Assessment tools
Course Contents	UNIT-I: Principles and applications of paper, thin layer, gel filtration, ion-exchange, affinity, column & HPTLC, GC, HPLC and FPLC. Principles and applications of UV-visible, Fluorescence, IR and FTIR, Raman, NMR and FTNMR, ESR and X-Ray spectroscopy. Tracer techniques in biology: concept of radioactivity, radioactivity counting methods with principles of different types of counters, concept of emitters, scintillation counters, -ray spectrometers, autoradiography, applications of radioactive tracers in biology.	Assignm ntMid term
	UNITII: General principles, paper and gel electrophoresis, native and SDS-PAGE, 2D-PAGE, capillary electrophoresis. MS/MS, LC-MS, GC-MS, MALDI-TOF, applications of mass spectrometry in biochemistry. Principles and applications of phosphor imager, MRI and CT scan.	ABL

UNITIII: Hydrodynamic methods of separation of biomolecules such as viscosity and	Assignments
sedimentation velocity, - their principles. Principle, function and instrumentation of	
atomic absorption spectrophotometry. Production of antibodies, immunoprecipitation,	
immunoblotting, immunoassays, RIA and ELISA.	
UNIT IV: Basic principles of sedimentation, type, care and safety aspects of	End term
centrifuge preparative and analytical centrifugation. Cryopreservation, polymerase	
chain reaction (PCR), FACS.	

Resources:	LCD, Black/White Board, Computer, Biochemical lab, All the basic	
	instrument and chemicals for biochemical analyses	
Practical Exercise	Course Modules	Assessment
		tools
	Demonstration & Report Preparation	Activity
	1. SDS PAGE	based
	2. Centrifugation	learning can
	Lab Analysis & Report Preparation	be given to
	1. Electrophoresis	implement
	2. Atomic Absorption Spectrophotometry	application
		aspect
Assignment/Tutorial:	Students are required to analysis any given biochemical compound using	
	spectrophotometry.	
	1. Identification and validation of rice reference protein for western	
List of Assignments	blotting	
	2. Electrophoretic separation of proteins and nucleic acids	
	3. ELISA technique	
	4. Principle, function and instrumentation of AAS	
ABL	1. pH measurement and buffer preparation	
	2. Estimation of biomolecules through spectrophotometry method	
	3. Separation and estimation of biomolecules through HPLC	
	4. Separation and analysis of fatty acids/lipids by GC	
	A. Textbooks:	
	▶ Boyer R. 2011. Biochemistry Laboratory: Modern Theory and	
	Techniques 2 nd Edition. Pearson.	
	Hofman A and Clokie S. 2010. Wilson and Walker's Principles and	
	Technique of Biochemistry and Molecular Biology. 7 th edition.	
	Cambridge University Press.	
	Sawhney SK and Singh R. (2000). Introductory Practical	
	Biochemistry. 2 nd edition. Narosa.	
	▶ Katoch R. 2011. Analytical Technique in Biochemistry and	
Suggestedreading:	Molecular Biology. Springer.	
Suggesteur eaunig.		
	B. ReferenceBook:	
	Boyer R. 2009. Modern Experimental Biochemistry. Fifth	
	impression. Pearson	
	➤ Lottspeich F and Engles JW. (Eds). 2018. Biochemistry:	
	Analytical Methods and concept in Biochemstry and	
	Molecular Biology, Wiley-VCH	
	▶ Wilson K and Walker J. 2010. Principles and Techniques of	
	Biochemstry and Molecular Biology 7 th Edition Cambridge	
	University Dress	
	University Press	

